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Abstract
The global burden of cognitive, mental, neurological, and substance-use disorders at 258 million disability adjusted life years calls for immediate “action” in their 
prevention and management. The electroencephalogram (EEG) is one of the most widely-used instruments for the non-invasive neuro-physiological measure of 
brain function and health. The EEG was originally used to solely monitor and record electric waves generated by electrical activity in the brain to aid in clinical 
decision-making and diagnosis. Technological improvements have made it possible for state-of the-art EEG computer-based systems like NeuralScan by Medeia 
Inc. to evaluate changes in power and in ratios of these brain waves with changes in brain and mental health status. Today’s EEG machines can also identifying the 
precise localization of these changes enabling more accurate diagnosis and treatment. Improvements in EEG technology have made them robust, stationary/portable, 
high fidelity, versatile with the ability to carry out complex functions and calculations yet still be user/clinician-friendly highlighting their potential for use in clinical, 
research, epidemiological and public health settings. The present article presents an overview on EEG machines, their use in diagnosis, prognosis and therapy and to 
generate EEG-based markers in the area of cognition, mental and brain health. 

Introduction
EEG in brain health and cognition

Normal functioning of the cerebral cortex is critical to 
physiological, neurological and mental health. Currently, cognitive, 
mental, neurological, and substance-use diseases/disorders account for 
258 million disability adjusted life years (10.4% total all cause DALYS). 
This reiterates the need for better prevention, diagnostic and treatment 
options for brain health that can be used in clinical, epidemiological 
and public health settings [1-2]. Among the diagnostic and assessment 
tools for brain health are the a) non-invasive: neuro-clinical-physical 
examinations, questionnaires /instruments, electroencephalogram 
EEG, neuroimaging including ultrasound, magnetic resonance 
imaging, MRI, functional MRI (fMRI), positron emission tomography 
(PET), and computerized tomography (CT); and b) the invasive: 
biochemical tests, genetic tests, cerebrospinal fluid (CSF) analysis, 
angiography, and biopsies. While the MRI, fMRI, PET and CT provide 
good spatial resolution of brain health, the EEG evaluates brain health 
via temporal resolution of brain function within the millisecond range 
[3-5], which is not possible with the other approaches. Due to its 
sensitivity to changes in brain function and structure and its simplicity 
of use in clinical settings, its use in intensive care has continued to 
increase in recent years [6-8]. 

The EEG assesses the neurophysiological aspects of brain function 
via the capture of the electric waves generated by electrical activity 
in the cerebral cortex. The cerebral cortex is divided into four lobes: 
the frontal, parietal, temporal and occipital; each of which performs 
specific functions. The 4mm thick cerebral cortex was mapped out by 
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Brodmann based on cytoarchitecture, histology and function into 52 
Brodmann’s areas (BA). Twenty-six BA are of current interest in neuro-
electrophysiological studies on brain and mental health. The normal 
brain waves emitted by the cerebral cortex based on their electrical 
activity are the Alpha (α) at 8-15 Hz, Beta (β) at 16-30 Hz, Gamma 
(γ) at 31-100 Hz with low gamma at 30–70 Hz and high gamma at 70–
150 Hz and the Sensorimotor rhythm (SMR) at 13-15 Hz. The power 
and the ratio of these waves vary with regions of the cerebral cortex, 
the task at hand and different mental states. The morphology, power 
and ratio of these waves are used today to classify normal and abnormal 
brain function as well as in diagnosis, prognosis and therapy. Today’s 
EEG machines allow precise localization of the normal/abnormal wave 
form in the brain and in turn which BA areas are involved enabling the 
clinical decision-making process. 

EEG as a diagnostic, prognostic and therapeutic tool

Indications for monitoring using EEG include seizure disorders 
such as  epilepsy [9-13], traumatic brain injury [14-17], stroke [18-
24], encephalitis [25-27], brain tumor [28], encephalopathy [29-31], 
memory problems [32-33], sleep disorders [34-35], coma [36-39], 
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when the analog signal is digitized by the analog-to-digital converter 
[122-128]. 

Artifact correction: Correction for artifact removal or attenuation 
is carried out depending on the data and study design. Artifacts due 
to eye blinks or head shaking which are symptoms are attenuated 
and not removed. ICA (Independent Component Analysis) and SSP 
(Signal Space Projection) are some of the methods used for artifact 
attenuation [130-133]. Signal averaging, thresholding of the output, 
signal enhancement, and finally edge detection are then carried out. 

Data processing: Processing of data includes feature extraction, 
selection and classification. In general for most digital EEG machines, 
feature extraction alone is carried out. Fast Fourier Transform (FFT), 
Wavelet Transform (WT), Time-Frequency Distributions (TFD), and 
Foreword and Inverse Source Space analysis are among the methods 
used for feature extraction [133-137]. Patient data is then stored for 
neuroclinical assessment and report generation [138-140].

Software developments in EEG technology

Previously, the patterns of EEG wave forms/wave morphology 
alone were used in combination with other neurological tests to 
diagnose neurological disorders [141-143]. In more recent years 
the processed EEG data (wave forms) are quantified via quantitative 
EEG (q-EEG), wherein a specialized software program converts 
1-dimensional (1-D) brain wave signals into 2-D topographical color 
maps comparing a patient’s brain function to a normative database 
(Neuroguide, FDA research standard) [144-146]. The resulting color 
code allows for the generation of quantitatively relevant Z-scores. 
Another software development that revolutionized the field improving 
the spatial resolution of EEGs was the use of Independent Component 
Analysis (ICA) in combination with Low Resolution Electromagnetic 
Tomography (LORETA) [145-153] to transform 2-D into 3-D EEG 
data, which enabled locating the source of EEG waves on the cortical 
lobes. Source location (originally only possible via CT or MRI) is 
important as it enables identification of the functional regions involved 
in specific responses or disease states.

Figure 1 shows the components of the NeuralScan by Medeia 
a state-of the-art EEG computer-based system. It is in keeping with 
current standards and incorporates the most up-to-date technological 
improvements in the field of EEG machines. Figure 1A shows the 
21-channel EEG cap. The built-in software can carry out routine clinical 
assessment of EEG wave forms (alpha, beta, theta or gamma) and 
wave forms tests, namely; resting-state EEG (eyes closed and opened). 
Or, the system can evaluate working memory and ERPs (Figure 1B) 
from evoked potentials (visual, auditory, odd ball paradigm) and 
behavioral motor tests. The system is capable of i) “automatic” artifact 
(blinks, pulse artifact, MR gradient artifact, ballisto-cardiogram, and 
bad blocks) removal via FFT, wavelet and ICA as well as ii) feature 
extraction, iii) frequency‐based  analysis  of the EEG wave forms 
and iv) for transformation from the time domain to the frequency 
domain. The software can also perform qEEG for brain mapping, 
power and frequency analysis and comparison with a normative 
database provided with the package (Figure 1C) and with eLORETA 
to carry out source analysis (Figure 1D). Also provided with it is a 
neuropsychological questionnaire with some sections that the patient 
answers (self-reporting) and others that the clinician administers. The 
test takes in total 15 minutes to perform. The reporting system can be 
customized to make summarized reports that can be easily understood 
by physician and patient (Figure 1E), or detailed reports that can depict 
correspondence of EEG and vital signs (Figure 1F).

cardiac arrest [40], diagnosis of brain death [41-42] and dementia. In 
recent times EEGs have also been used to study Alzheimer’s disease (AD) 
[43-44] and other forms of dementia [45-46], multiple sclerosis [47-49], 
pain disorders [50-51], Parkinson’s disease [52-55], migraines [56-58], 
and behavioral disorders such as attention deficit hyperactivity disorder 
(ADHD) [59-61], autism [62-64], depression [65-67], post-traumatic 
stress disorder [68-71], complex developmental trauma disorder [72] 
and substance abuse [73-75]. With the advent of neurofeedback EEG 
became viable as a treatment option, being used for performance 
enhancement (academic, athletic or mental), and as treatment for 
ADHD, autism, Alzheimer’s, post-traumatic disorders and substance 
abuse [76-80]. Thus since 1924 [81], the EEG has evolved from being 
an add-on tool in the diagnosis of brain health, to an instrument that 
is used for diagnosis, disease-staging [82-88], evaluation of prognosis 
including during the course of treatment (pharmacotherapy and 
chemotherapy) [89-93], and as itself as a therapeutic tool [76-80].

EEG: Aiding diagnosis, preventing misdiagnosis and under-
diagnosis

EEG has recently been used in the differential diagnosis of 
syndromes of uncertain etiology [94-97]. For example, subcortical 
ischemia or multiple infarcts or single strokes have been known to cause 
personality changes, affective disorders, and even psychosis. Similarly, 
psychiatric disorders such as obsessive compulsive disorder (OCD), 
schizophrenia, autism, dyslexia, and addictions have shown distinct 
differences in neurological features between subjects and controls. The 
EEG is also useful in distinguishing diseases with similar symptoms yet 
different etiopathophysiology. Cognitive impairments, for example, can 
be due to a range of reasons like electrolyte imbalance, hypoglycemia, 
sleep disorders, stress, head injury, pain, dementia, etc. [94]. 

Recently the EEG’s potential to generate either early diagnostic 
markers or biomarkers has been explored for neurological disorders 
like AD [43-44], multiple sclerosis [47-49], Parkinson’s disease [52-
55], schizophrenia [98], autism [62-64], and dyslexia. A study on 
neurodegeneration and progression from mild cognitive impairment 
(MCI) to fully developed AD revealed significantly higher levels of 
delta bands among AD subjects, for example [84]. A 2-year longitudinal 
study on 86 MCI patients used six EEG biomarkers to successfully 
predict the conversion of 25 patients exhibiting beta activity to AD with 
88% sensitivity and 82% specificity [86]. Automatic feature extraction 
techniques helped predict focal seizures increasing the sensitivity to 
87.8% [88]. 

Current EEG technology in a nutshell

The design, specification, maintenance and calibration protocols 
for electrodes [99-109], electrode placement systems [109-118], use 
of ground and reference electrodes, EEG machines (analog, digital 
or multi-channel), EEG calibrators and montages [119] are governed 
by stringent standards and guidelines [120-129]. EEG recording 
procedures are categorized into two stages: a) data acquisition and 
pre-processing, and b) feature extraction. The stages are performed as 
follows:

Acquisition and pre-processing: The EEG captures the pyramidal 
neuronal activity comprising action potentials (3ms) and postsynaptic 
potentials (200ms) via electrodes following an excitatory stimulus [98]. 
The 20μV signal is amplified using a differential amplifier, followed by 
normal amplifiers. High-pass (HPF), low-pass (LPF) and notch filters 
are then used to minimize/overcome/nullify “noise” arising from 
intrinsic and extrinsic factors, and the distortion caused by aliasing 
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EEG-based markers of cognition, mental and brain health

Normal EEG wave forms [154-156] vary with age, mental states 
and depending on if they are stimulus induced or resting-state. 
Abnormal wave form patterns [126,157] are subdivided into epileptic 
and generalized non-ictal wave forms and include: intermittent 
slowing, intermittent rhythmic delta activity (IRDA) continuous slow 
activity (diffuse slowing, alpha coma), periodic abnormalities (Burst 
suppression, periodic discharges (GPDs/SIRPIDS), and background 
suppression. Disease-specific patterns are also observed. For example, 
disease-specific EEG patterns have been noted in subacute sclerosing 
panencephalitis (SSPE) [158] and in Creutzfeldt-Jakob disease [159]. 

The processed EEG wave forms captured at a) resting-state 
EEG (eyes closed and opened), b) following a specific task (working 
memory) and c) event related potentials (ERPs) including evoked 
potentials (visual, auditory, odd ball paradigm) are the source of several 
brain health biomarkers [160-162]. Figure 1 summarizes wave types 
that can be used in EEG to provide information on neurological and 

mental health EEG-generated markers that have been used in both 
neurological/mental health research and for clinical assessment.

Event related potentials (ERPs) in disease and research

Evoked or event-related potentials (ERPs) are obtained following 
an event/stimulus. The stimulus can be visual, auditory, motor or task 
related. Checker-boards with black and white squares with the black 
and white squares alternating their positions at a predefined period 
are often used as visual stimuli. They are presented on a computer 
screen for a specified duration, and as the brain is able to recognize the 
interchange in black and white squares within a fraction of a second; this 
recognition is captured in an EEG wave form. The epochs that capture 
one complete stimuli and response cycle are marked out and selected. As 
the stimulus/test duration may be 5 minutes. All the epochs pertinent 
to that duration and stimulus are similarly marked and selected. The 
averaged response to a particular stimulus provides the event-related 
potential (Figure 1D) for that stimulus. The ERP waveform has both 
positive and negative components which are denoted as “P” and “N” 

Figure 1. Components of Neuralscan by Medeia. (A) 21-Channel electroencephalograph (EEG) cap; (B) Signal averaging for event related potentials (ERP) generation; (C) Power 
analysis, frequency analysis, and QEEG mapping; (D) Source localization via exact low-resolution electromagnetic tomography (eLORETA); (E) simple report; (F) full report with time 
correspondence to vital signs reading
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respectively with a number (P100 and N100) that either indicates the 
latency in milliseconds or the hierarchical position of the wave form. 

In an ERP study of schizophrenic patients, P100 amplitude 
principal component analysis revealed that while the first principal 
component (global activity) and the second (reciprocal anterior-
posterior activation) were similar in patients and controls, the third 
component (hemispheric  reciprocity in activity) showed unique 
activation of the center versus anterior and posterior regions in 
patients with schizophrenia [163]. In a study on Autism Spectrum 
Disorder (ASD), autistic children exhibited longer P100 latencies, 
weaker N100 amplitudes and larger P300 amplitudes compared with 
typically developing (TD) children. [164]. ERPs detected in the early 
phase following traumatic brain injury have been found to serve as 
predictive markers for functional and cognitive recovery at six months 
post-injury [165]. ERPs have also been used to identify impairment in 
the dorsolateral prefrontal and anterior cingulate cortices in Parkinson’s 
Disease [166]. EEG (non-linear complexity) in combination with 
a neuropsychological assessment (Alzheimer's Disease Assessment 
Scale-cognitive: ADAS-Cog) and cardiovascular history assessment 
was also found to increase diagnostic accuracy from 80% to 92% for 
distinguishing between AD, vascular dementia, mixed dementia, and 
MCI [82]. 

Specific cortical auditory evoked ERPs have also been used 
to identify sensitive period cutoffs for primary auditory cortical 
development in juvenile cochlear implant recipients [167]. Further, 
ERPs have been used to identify differential emotional processing 
based on responses to emotionally negative stimuli in veterans with 
PTSD [168]. A study of African American seniors has also found that 
EEG spectral power at rest with eyes closed during a One Card Back 
Learning test (OCL, memory) was able to differentiate those at-risk of 
MCI from those that were stable [32]. 

Technological variants of EEG

In more recent years, specialized types of EEG have been 
developed for specific functions. Each of these provide unique 
advantages for applications in research or in the clinic. This section 
discusses two of the most common of these recent EEG-based 
technologies, quantitative EEG and low resolution electromagnetic 
tomography. (Table 1).

Quantitative EEG (qEEG)

In Quantitative EEG (qEEG), EEG data is used to create 2-D 
topographical color-coded brain maps that reflect the Z-scores obtained 
of the patient’s brain functioning when compared to a normative 
reference database (Neuroguide, FDA research standard) (Figure 1C). 
The waves are then analyzed to determine their distribution, power, 
ratio, coherence and connectivity across the cerebral lobes [144-146]. 
A study on the use of qEEG to monitor and aid in the treatment of 
traumatic brain injury (TBI) confirmed that alpha power (AUC=0.87, 
p<0.01) and variability of the relative fast theta power (AUC=0.84, 
p<0.01) demonstrated high prognostic value [17]. qEEG was also shown 
to have clinical diagnostic value for viral encephalitis, exhibiting a 
higher level of detail and precision compared with EEG [27]. Unusually 
high theta activity in the frontal region and higher theta-to-beta activity 
is observed in ADHD [169]. A review of studies on Parkinson’s disease 
(PD) found slowing EEG frequencies to be correlated with a decline 
of cognition with increase of spectral powers in delta and theta and 
a decrease in alpha, beta, and gamma activity in this disease setting. 
Topographically the occipital, parietal, and temporal lobes also showed 
higher correlation with the spectral changes observed in Parkinson’s 
disease [170]. 

Low resolution electromagnetic tomography (LORETA)

In Low Resolution Electromagnetic Tomography (LORETA), 

[147-153] 2-D EEG data is converted into 3-D data to locate the 

EEG 

•	 Wave form characteristics 
•	 Peak frequency of the brain waves recorded
•	 Theta-Beta Power Ratio
•	 Clinical significance/relevance of a) Low peak frequency, b) High peak frequency 

Evoked Potentials & Event-related potentials 
(ERPs)

•	 Visual evoked potentials (VEP), Auditory evoked potentials
•	 ERPs their mean and peak amplitude and latency across neuro- and mental disorders. 
•	 Potential ERP based Brain Biomarkers: C1 and P1,  P200,  P300,  P3a,  P3b,  P600, N100,  N200,  N2pc,  N170,  N400, Early left 

anterior negativity (ELAN). Error-related negativity (ERN), Late positive component (LPC), Lateralized readiness potential (LRP), 
Mismatch negativity, N2pc, Bereitschaft’s potential, Contingent negative variation (CNV), Somatosensory evoked potential, Visual 
N1, ERP synchrony and ERP desynchrony.

•	 Odd ball paradigm, ERP: the P300 and the latency (in ms)
•	 Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS),
•	 Resting state EEG 

Frequency Analysis & qEEG 

•	 Absolute power (voltage, P=mV2) in the patient’s EEG database
•	 Relative power in a brain wave compared to the total power in a patient’s EEG (θ/ θ + β + α + ∆)
•	 Inter- and intra-hemisphere coherence, right-left hemisphere and front-back balance in power and symmetry
•	 Ratios of the EEG brain waves (Hz) and their influence on brain and mental health?
•	 Mean frequency of the patient’s brain waves. 
•	 Z-score value of the patient’s raw scores compared with the normative database – their direction and magnitude of the difference 

and their implications on brain health
•	 Appearance of the above variables if there is a local, focal, regional or generalized abnormality?

sLORETA & eLORETA 
•	 Source of the electrical activity from the electrode/channel/derivation located in the brain
•	 Which Brodmann areas in the brain are involved?
•	 What are their cytoarchitecture, histology and function?

Table 1. EEG-based markers of brain/mental health
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source of the EEG waves on the cortical lobes. This in turn identifies 
the functional areas involved, localizing wave responses to the source 
to provide a neuroanatomical context (Figure 1D). 

In a case study of ADHD investigating treatment with dopamine 
agonist KB200z, LORETA was used to successfully identify increased in 
frequency bands in the anterior, dorsal and posterior cingulate regions 
and right dorsolateral prefrontal cortex in response to treatment. 
Another study used LORETA to demonstrate increased dissociation 
between brain processes in schizophrenic patients, a key factor thought 
to account for the differences in the cognitive and emotional state of 
schizophrenic patients [98]. Specific LORETA parameters (current phase 
density and lagged phase synchronization) have also been successfully 
correlated with Aβ42 and total tau concentration in Alzheimer’s disease 
patients. A LORETA z-score feedback approach has also been shown to 
reduce pain in head and neck cancer patients, improvements associated 
with modified brain activity in pain-associated brain regions. In another 
study comparing healthy individuals with patients with treated and 
untreated menopausal syndrome and depression, LORETA was used 
to successfully identify cortical anatomical correlates of depression as 
well as the pharmacotherapy mode of action. LORETA was also able 
to identify significant elevations in alpha activity in the precuneus, and 
posterior middle temporal gyrus and decreased alpha activity in the 
medial frontal cortex, including the anterior cingulate and the superior 
and medial frontal gyri, in migraine patients. 

Conclusion
The EEG has evolved in recent decades from a noninvasive 

monitoring tool into an instrument with diagnostic, prognostic and 
therapeutic/neurofeedback applications for neurological and mental 
disorders. Today’s state-of-the-art EEG machines allow for spectral 
analysis using qEEG, and source analysis using LORETA. EEG-based 
technologies have also proven useful in the diagnosis of disorders with 
complex etiology and in the early diagnosis of cognitive impairment, 
providing clinicians with a valuable window of opportunity to 
implement preventive measures via lifestyle changes and/or therapeutic 
interventions. Today’s state-of-the-art EEG machines, like NeuralScan 
by Medeia can perform tests with high accuracy within 15 minutes. 
Portability of current EEG machines allow for ease-of-use in public 
health and laboratory settings, as well as for research purposes and 
clinical use.
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Abstract
The global burden of cognitive, mental, neurological, and substance-use disorders at 258 million disability adjusted life years calls for immediate “action” in their 
prevention and management. The electroencephalogram (EEG) is one of the most widely-used instruments for the non-invasive neuro-physiological measure of 
brain function and health. The EEG was originally used to solely monitor and record electric waves generated by electrical activity in the brain to aid in clinical 
decision-making and diagnosis. Technological improvements have made it possible for state-of the-art EEG computer-based systems like NeuralScan by Medeia 
Inc. to evaluate changes in power and in ratios of these brain waves with changes in brain and mental health status. Today’s EEG machines can also identifying the 
precise localization of these changes enabling more accurate diagnosis and treatment. Improvements in EEG technology have made them robust, stationary/portable, 
high fidelity, versatile with the ability to carry out complex functions and calculations yet still be user/clinician-friendly highlighting their potential for use in clinical, 
research, epidemiological and public health settings. The present article presents an overview on EEG machines, their use in diagnosis, prognosis and therapy and to 
generate EEG-based markers in the area of cognition, mental and brain health. 

Introduction
EEG in brain health and cognition

Normal functioning of the cerebral cortex is critical to 
physiological, neurological and mental health. Currently, cognitive, 
mental, neurological, and substance-use diseases/disorders account for 
258 million disability adjusted life years (10.4% total all cause DALYS). 
This reiterates the need for better prevention, diagnostic and treatment 
options for brain health that can be used in clinical, epidemiological 
and public health settings [1-2]. Among the diagnostic and assessment 
tools for brain health are the a) non-invasive: neuro-clinical-physical 
examinations, questionnaires /instruments, electroencephalogram 
EEG, neuroimaging including ultrasound, magnetic resonance 
imaging, MRI, functional MRI (fMRI), positron emission tomography 
(PET), and computerized tomography (CT); and b) the invasive: 
biochemical tests, genetic tests, cerebrospinal fluid (CSF) analysis, 
angiography, and biopsies. While the MRI, fMRI, PET and CT provide 
good spatial resolution of brain health, the EEG evaluates brain health 
via temporal resolution of brain function within the millisecond range 
[3-5], which is not possible with the other approaches. Due to its 
sensitivity to changes in brain function and structure and its simplicity 
of use in clinical settings, its use in intensive care has continued to 
increase in recent years [6-8]. 

The EEG assesses the neurophysiological aspects of brain function 
via the capture of the electric waves generated by electrical activity 
in the cerebral cortex. The cerebral cortex is divided into four lobes: 
the frontal, parietal, temporal and occipital; each of which performs 
specific functions. The 4mm thick cerebral cortex was mapped out by 
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Brodmann based on cytoarchitecture, histology and function into 52 
Brodmann’s areas (BA). Twenty-six BA are of current interest in neuro-
electrophysiological studies on brain and mental health. The normal 
brain waves emitted by the cerebral cortex based on their electrical 
activity are the Alpha (α) at 8-15 Hz, Beta (β) at 16-30 Hz, Gamma 
(γ) at 31-100 Hz with low gamma at 30–70 Hz and high gamma at 70–
150 Hz and the Sensorimotor rhythm (SMR) at 13-15 Hz. The power 
and the ratio of these waves vary with regions of the cerebral cortex, 
the task at hand and different mental states. The morphology, power 
and ratio of these waves are used today to classify normal and abnormal 
brain function as well as in diagnosis, prognosis and therapy. Today’s 
EEG machines allow precise localization of the normal/abnormal wave 
form in the brain and in turn which BA areas are involved enabling the 
clinical decision-making process. 

EEG as a diagnostic, prognostic and therapeutic tool

Indications for monitoring using EEG include seizure disorders 
such as  epilepsy [9-13], traumatic brain injury [14-17], stroke [18-
24], encephalitis [25-27], brain tumor [28], encephalopathy [29-31], 
memory problems [32-33], sleep disorders [34-35], coma [36-39], 
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when the analog signal is digitized by the analog-to-digital converter 
[122-128]. 

Artifact correction: Correction for artifact removal or attenuation 
is carried out depending on the data and study design. Artifacts due 
to eye blinks or head shaking which are symptoms are attenuated 
and not removed. ICA (Independent Component Analysis) and SSP 
(Signal Space Projection) are some of the methods used for artifact 
attenuation [130-133]. Signal averaging, thresholding of the output, 
signal enhancement, and finally edge detection are then carried out. 

Data processing: Processing of data includes feature extraction, 
selection and classification. In general for most digital EEG machines, 
feature extraction alone is carried out. Fast Fourier Transform (FFT), 
Wavelet Transform (WT), Time-Frequency Distributions (TFD), and 
Foreword and Inverse Source Space analysis are among the methods 
used for feature extraction [133-137]. Patient data is then stored for 
neuroclinical assessment and report generation [138-140].

Software developments in EEG technology

Previously, the patterns of EEG wave forms/wave morphology 
alone were used in combination with other neurological tests to 
diagnose neurological disorders [141-143]. In more recent years 
the processed EEG data (wave forms) are quantified via quantitative 
EEG (q-EEG), wherein a specialized software program converts 
1-dimensional (1-D) brain wave signals into 2-D topographical color 
maps comparing a patient’s brain function to a normative database 
(Neuroguide, FDA research standard) [144-146]. The resulting color 
code allows for the generation of quantitatively relevant Z-scores. 
Another software development that revolutionized the field improving 
the spatial resolution of EEGs was the use of Independent Component 
Analysis (ICA) in combination with Low Resolution Electromagnetic 
Tomography (LORETA) [145-153] to transform 2-D into 3-D EEG 
data, which enabled locating the source of EEG waves on the cortical 
lobes. Source location (originally only possible via CT or MRI) is 
important as it enables identification of the functional regions involved 
in specific responses or disease states.

Figure 1 shows the components of the NeuralScan by Medeia 
a state-of the-art EEG computer-based system. It is in keeping with 
current standards and incorporates the most up-to-date technological 
improvements in the field of EEG machines. Figure 1A shows the 
21-channel EEG cap. The built-in software can carry out routine clinical 
assessment of EEG wave forms (alpha, beta, theta or gamma) and 
wave forms tests, namely; resting-state EEG (eyes closed and opened). 
Or, the system can evaluate working memory and ERPs (Figure 1B) 
from evoked potentials (visual, auditory, odd ball paradigm) and 
behavioral motor tests. The system is capable of i) “automatic” artifact 
(blinks, pulse artifact, MR gradient artifact, ballisto-cardiogram, and 
bad blocks) removal via FFT, wavelet and ICA as well as ii) feature 
extraction, iii) frequency‐based  analysis  of the EEG wave forms 
and iv) for transformation from the time domain to the frequency 
domain. The software can also perform qEEG for brain mapping, 
power and frequency analysis and comparison with a normative 
database provided with the package (Figure 1C) and with eLORETA 
to carry out source analysis (Figure 1D). Also provided with it is a 
neuropsychological questionnaire with some sections that the patient 
answers (self-reporting) and others that the clinician administers. The 
test takes in total 15 minutes to perform. The reporting system can be 
customized to make summarized reports that can be easily understood 
by physician and patient (Figure 1E), or detailed reports that can depict 
correspondence of EEG and vital signs (Figure 1F).

cardiac arrest [40], diagnosis of brain death [41-42] and dementia. In 
recent times EEGs have also been used to study Alzheimer’s disease (AD) 
[43-44] and other forms of dementia [45-46], multiple sclerosis [47-49], 
pain disorders [50-51], Parkinson’s disease [52-55], migraines [56-58], 
and behavioral disorders such as attention deficit hyperactivity disorder 
(ADHD) [59-61], autism [62-64], depression [65-67], post-traumatic 
stress disorder [68-71], complex developmental trauma disorder [72] 
and substance abuse [73-75]. With the advent of neurofeedback EEG 
became viable as a treatment option, being used for performance 
enhancement (academic, athletic or mental), and as treatment for 
ADHD, autism, Alzheimer’s, post-traumatic disorders and substance 
abuse [76-80]. Thus since 1924 [81], the EEG has evolved from being 
an add-on tool in the diagnosis of brain health, to an instrument that 
is used for diagnosis, disease-staging [82-88], evaluation of prognosis 
including during the course of treatment (pharmacotherapy and 
chemotherapy) [89-93], and as itself as a therapeutic tool [76-80].

EEG: Aiding diagnosis, preventing misdiagnosis and under-
diagnosis

EEG has recently been used in the differential diagnosis of 
syndromes of uncertain etiology [94-97]. For example, subcortical 
ischemia or multiple infarcts or single strokes have been known to cause 
personality changes, affective disorders, and even psychosis. Similarly, 
psychiatric disorders such as obsessive compulsive disorder (OCD), 
schizophrenia, autism, dyslexia, and addictions have shown distinct 
differences in neurological features between subjects and controls. The 
EEG is also useful in distinguishing diseases with similar symptoms yet 
different etiopathophysiology. Cognitive impairments, for example, can 
be due to a range of reasons like electrolyte imbalance, hypoglycemia, 
sleep disorders, stress, head injury, pain, dementia, etc. [94]. 

Recently the EEG’s potential to generate either early diagnostic 
markers or biomarkers has been explored for neurological disorders 
like AD [43-44], multiple sclerosis [47-49], Parkinson’s disease [52-
55], schizophrenia [98], autism [62-64], and dyslexia. A study on 
neurodegeneration and progression from mild cognitive impairment 
(MCI) to fully developed AD revealed significantly higher levels of 
delta bands among AD subjects, for example [84]. A 2-year longitudinal 
study on 86 MCI patients used six EEG biomarkers to successfully 
predict the conversion of 25 patients exhibiting beta activity to AD with 
88% sensitivity and 82% specificity [86]. Automatic feature extraction 
techniques helped predict focal seizures increasing the sensitivity to 
87.8% [88]. 

Current EEG technology in a nutshell

The design, specification, maintenance and calibration protocols 
for electrodes [99-109], electrode placement systems [109-118], use 
of ground and reference electrodes, EEG machines (analog, digital 
or multi-channel), EEG calibrators and montages [119] are governed 
by stringent standards and guidelines [120-129]. EEG recording 
procedures are categorized into two stages: a) data acquisition and 
pre-processing, and b) feature extraction. The stages are performed as 
follows:

Acquisition and pre-processing: The EEG captures the pyramidal 
neuronal activity comprising action potentials (3ms) and postsynaptic 
potentials (200ms) via electrodes following an excitatory stimulus [98]. 
The 20μV signal is amplified using a differential amplifier, followed by 
normal amplifiers. High-pass (HPF), low-pass (LPF) and notch filters 
are then used to minimize/overcome/nullify “noise” arising from 
intrinsic and extrinsic factors, and the distortion caused by aliasing 
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EEG-based markers of cognition, mental and brain health

Normal EEG wave forms [154-156] vary with age, mental states 
and depending on if they are stimulus induced or resting-state. 
Abnormal wave form patterns [126,157] are subdivided into epileptic 
and generalized non-ictal wave forms and include: intermittent 
slowing, intermittent rhythmic delta activity (IRDA) continuous slow 
activity (diffuse slowing, alpha coma), periodic abnormalities (Burst 
suppression, periodic discharges (GPDs/SIRPIDS), and background 
suppression. Disease-specific patterns are also observed. For example, 
disease-specific EEG patterns have been noted in subacute sclerosing 
panencephalitis (SSPE) [158] and in Creutzfeldt-Jakob disease [159]. 

The processed EEG wave forms captured at a) resting-state 
EEG (eyes closed and opened), b) following a specific task (working 
memory) and c) event related potentials (ERPs) including evoked 
potentials (visual, auditory, odd ball paradigm) are the source of several 
brain health biomarkers [160-162]. Figure 1 summarizes wave types 
that can be used in EEG to provide information on neurological and 

mental health EEG-generated markers that have been used in both 
neurological/mental health research and for clinical assessment.

Event related potentials (ERPs) in disease and research

Evoked or event-related potentials (ERPs) are obtained following 
an event/stimulus. The stimulus can be visual, auditory, motor or task 
related. Checker-boards with black and white squares with the black 
and white squares alternating their positions at a predefined period 
are often used as visual stimuli. They are presented on a computer 
screen for a specified duration, and as the brain is able to recognize the 
interchange in black and white squares within a fraction of a second; this 
recognition is captured in an EEG wave form. The epochs that capture 
one complete stimuli and response cycle are marked out and selected. As 
the stimulus/test duration may be 5 minutes. All the epochs pertinent 
to that duration and stimulus are similarly marked and selected. The 
averaged response to a particular stimulus provides the event-related 
potential (Figure 1D) for that stimulus. The ERP waveform has both 
positive and negative components which are denoted as “P” and “N” 

Figure 1. Components of Neuralscan by Medeia. (A) 21-Channel electroencephalograph (EEG) cap; (B) Signal averaging for event related potentials (ERP) generation; (C) Power 
analysis, frequency analysis, and QEEG mapping; (D) Source localization via exact low-resolution electromagnetic tomography (eLORETA); (E) simple report; (F) full report with time 
correspondence to vital signs reading
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respectively with a number (P100 and N100) that either indicates the 
latency in milliseconds or the hierarchical position of the wave form. 

In an ERP study of schizophrenic patients, P100 amplitude 
principal component analysis revealed that while the first principal 
component (global activity) and the second (reciprocal anterior-
posterior activation) were similar in patients and controls, the third 
component (hemispheric  reciprocity in activity) showed unique 
activation of the center versus anterior and posterior regions in 
patients with schizophrenia [163]. In a study on Autism Spectrum 
Disorder (ASD), autistic children exhibited longer P100 latencies, 
weaker N100 amplitudes and larger P300 amplitudes compared with 
typically developing (TD) children. [164]. ERPs detected in the early 
phase following traumatic brain injury have been found to serve as 
predictive markers for functional and cognitive recovery at six months 
post-injury [165]. ERPs have also been used to identify impairment in 
the dorsolateral prefrontal and anterior cingulate cortices in Parkinson’s 
Disease [166]. EEG (non-linear complexity) in combination with 
a neuropsychological assessment (Alzheimer's Disease Assessment 
Scale-cognitive: ADAS-Cog) and cardiovascular history assessment 
was also found to increase diagnostic accuracy from 80% to 92% for 
distinguishing between AD, vascular dementia, mixed dementia, and 
MCI [82]. 

Specific cortical auditory evoked ERPs have also been used 
to identify sensitive period cutoffs for primary auditory cortical 
development in juvenile cochlear implant recipients [167]. Further, 
ERPs have been used to identify differential emotional processing 
based on responses to emotionally negative stimuli in veterans with 
PTSD [168]. A study of African American seniors has also found that 
EEG spectral power at rest with eyes closed during a One Card Back 
Learning test (OCL, memory) was able to differentiate those at-risk of 
MCI from those that were stable [32]. 

Technological variants of EEG

In more recent years, specialized types of EEG have been 
developed for specific functions. Each of these provide unique 
advantages for applications in research or in the clinic. This section 
discusses two of the most common of these recent EEG-based 
technologies, quantitative EEG and low resolution electromagnetic 
tomography. (Table 1).

Quantitative EEG (qEEG)

In Quantitative EEG (qEEG), EEG data is used to create 2-D 
topographical color-coded brain maps that reflect the Z-scores obtained 
of the patient’s brain functioning when compared to a normative 
reference database (Neuroguide, FDA research standard) (Figure 1C). 
The waves are then analyzed to determine their distribution, power, 
ratio, coherence and connectivity across the cerebral lobes [144-146]. 
A study on the use of qEEG to monitor and aid in the treatment of 
traumatic brain injury (TBI) confirmed that alpha power (AUC=0.87, 
p<0.01) and variability of the relative fast theta power (AUC=0.84, 
p<0.01) demonstrated high prognostic value [17]. qEEG was also shown 
to have clinical diagnostic value for viral encephalitis, exhibiting a 
higher level of detail and precision compared with EEG [27]. Unusually 
high theta activity in the frontal region and higher theta-to-beta activity 
is observed in ADHD [169]. A review of studies on Parkinson’s disease 
(PD) found slowing EEG frequencies to be correlated with a decline 
of cognition with increase of spectral powers in delta and theta and 
a decrease in alpha, beta, and gamma activity in this disease setting. 
Topographically the occipital, parietal, and temporal lobes also showed 
higher correlation with the spectral changes observed in Parkinson’s 
disease [170]. 

Low resolution electromagnetic tomography (LORETA)

In Low Resolution Electromagnetic Tomography (LORETA), 

[147-153] 2-D EEG data is converted into 3-D data to locate the 

EEG 

•	 Wave form characteristics 
•	 Peak frequency of the brain waves recorded
•	 Theta-Beta Power Ratio
•	 Clinical significance/relevance of a) Low peak frequency, b) High peak frequency 

Evoked Potentials & Event-related potentials 
(ERPs)

•	 Visual evoked potentials (VEP), Auditory evoked potentials
•	 ERPs their mean and peak amplitude and latency across neuro- and mental disorders. 
•	 Potential ERP based Brain Biomarkers: C1 and P1,  P200,  P300,  P3a,  P3b,  P600, N100,  N200,  N2pc,  N170,  N400, Early left 

anterior negativity (ELAN). Error-related negativity (ERN), Late positive component (LPC), Lateralized readiness potential (LRP), 
Mismatch negativity, N2pc, Bereitschaft’s potential, Contingent negative variation (CNV), Somatosensory evoked potential, Visual 
N1, ERP synchrony and ERP desynchrony.

•	 Odd ball paradigm, ERP: the P300 and the latency (in ms)
•	 Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS),
•	 Resting state EEG 

Frequency Analysis & qEEG 

•	 Absolute power (voltage, P=mV2) in the patient’s EEG database
•	 Relative power in a brain wave compared to the total power in a patient’s EEG (θ/ θ + β + α + ∆)
•	 Inter- and intra-hemisphere coherence, right-left hemisphere and front-back balance in power and symmetry
•	 Ratios of the EEG brain waves (Hz) and their influence on brain and mental health?
•	 Mean frequency of the patient’s brain waves. 
•	 Z-score value of the patient’s raw scores compared with the normative database – their direction and magnitude of the difference 

and their implications on brain health
•	 Appearance of the above variables if there is a local, focal, regional or generalized abnormality?

sLORETA & eLORETA 
•	 Source of the electrical activity from the electrode/channel/derivation located in the brain
•	 Which Brodmann areas in the brain are involved?
•	 What are their cytoarchitecture, histology and function?

Table 1. EEG-based markers of brain/mental health
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source of the EEG waves on the cortical lobes. This in turn identifies 
the functional areas involved, localizing wave responses to the source 
to provide a neuroanatomical context (Figure 1D). 

In a case study of ADHD investigating treatment with dopamine 
agonist KB200z, LORETA was used to successfully identify increased in 
frequency bands in the anterior, dorsal and posterior cingulate regions 
and right dorsolateral prefrontal cortex in response to treatment. 
Another study used LORETA to demonstrate increased dissociation 
between brain processes in schizophrenic patients, a key factor thought 
to account for the differences in the cognitive and emotional state of 
schizophrenic patients [98]. Specific LORETA parameters (current phase 
density and lagged phase synchronization) have also been successfully 
correlated with Aβ42 and total tau concentration in Alzheimer’s disease 
patients. A LORETA z-score feedback approach has also been shown to 
reduce pain in head and neck cancer patients, improvements associated 
with modified brain activity in pain-associated brain regions. In another 
study comparing healthy individuals with patients with treated and 
untreated menopausal syndrome and depression, LORETA was used 
to successfully identify cortical anatomical correlates of depression as 
well as the pharmacotherapy mode of action. LORETA was also able 
to identify significant elevations in alpha activity in the precuneus, and 
posterior middle temporal gyrus and decreased alpha activity in the 
medial frontal cortex, including the anterior cingulate and the superior 
and medial frontal gyri, in migraine patients. 

Conclusion
The EEG has evolved in recent decades from a noninvasive 

monitoring tool into an instrument with diagnostic, prognostic and 
therapeutic/neurofeedback applications for neurological and mental 
disorders. Today’s state-of-the-art EEG machines allow for spectral 
analysis using qEEG, and source analysis using LORETA. EEG-based 
technologies have also proven useful in the diagnosis of disorders with 
complex etiology and in the early diagnosis of cognitive impairment, 
providing clinicians with a valuable window of opportunity to 
implement preventive measures via lifestyle changes and/or therapeutic 
interventions. Today’s state-of-the-art EEG machines, like NeuralScan 
by Medeia can perform tests with high accuracy within 15 minutes. 
Portability of current EEG machines allow for ease-of-use in public 
health and laboratory settings, as well as for research purposes and 
clinical use.
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